
The Coupled-Cavity Transmission MaserOAnalysis

T. R. 0’MEARA

Surnrnar~-This paper discusses an analysis of a maser amplifier
structure (developed at Hughes Research Laboratories) consisting

of a cascade of iris-coupled 7/2 cavities intermixed with isolators.

Starting from the basic media susceptibility, narrow-band equivalent
networks and matrix representations are derived for maser and iso-

lator cavities. A rational function approximation to the over-all gain
function is thereby derived by matrix methods. From one viewpoint,
the over-all amplifier may be regarded as a negative-resistance in-
verse-feedback amplifier. The key design parameter is shown to be

the isolator round-trip attenuation. Excess isolation yields an over~y
rounded gain-frequency characteristic, while deficient isolaticm
yields a characteristic with excess ripple or instability in the extreme

cases. The feedback effects associated with intermediate “optimum”

values of isolation reduce the effective gain per cavity below the

normal gain of a single cavity, but in return one obtains a reduced

gain sensitivity which may be reduced to a value comparable to (or

lower than that of the pure traveling-wave maser.

1. INTRODUCTION

T

HE MASER amplifier structure to be discussed

in this paper is illustrated in Fig. 1. Details of
-J-

construction are discussed in a companion paper

[1]. It is a slow-wave microwave structure containing

an activated or pumped-maser material with inter--

spersed isolators, commonly known as a traveling-wave

maser. From one viewpoint, the ‘{slowing)) structure

slows the excitation wave sufficiently to permit a larger

interaction with the maser material [2], [3], [4]. A less

documented viewpoint is to regard lmaser gain as the

reverse of incidental dissipation; as is well known, the

first order effect of dissipation (or reverse dissipation)

on the loss (or gain) function is proportional to group

delay [S], and inversely proportional to circuit Q.

There exist a number of weak points in the usual slow-

wave approach. The slow-wave structure power gain

has been generally computed from the group velocity

or slowing factor which, in turn, is generally colmputed

on the assumption that there exists an image parameter

match. Since the basic structures are not image ter-

minated in an operational amplifier, the true group veloc-

ity near the band-pass edges and consequently the gain

are subject to considerable doubt in conventional

theory. In traveling-wave masers, the fundamental

limitation on bandwidth has usually been set by the

paramagnetic resonance line width rather than by the

structure pass band. However, since the tunable band-

width of a tunable maser is related to the structure

bandwidth, it is important that this be accurately

known.

In contrast to the slow-wave approach, passive micro-
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Fig. l—The Hughes coupled-cavity maser amplifier structure.

wave filters constructed of J1 structures, large in wave-

lengths (A/4 or A/2 dimensions are common), have been

approximated by lumped-parameter networks with

considerable success [6]. These equivalent lumped-

parameter networks are much easier to analyze or syn-

thesize than their distributed parameter counterparts.

This same general approach is also applicable to ac-

tive filters including maser amplifiers, although so far

as is known, it has not been previously attempted in the

literature. With a filter approach, we may gain an under-

standing of many of the effects observed in the labora-

tory which are probably inexplicable by the LISUd

traveling-wave concepts. For example, one may show

how the maser activity and isolators influence band-

width and band shape.

First we will develop a chain-matrix description of

the three basic components which comprise the Strict-

ure as follows: 1) the isolator, 2) the resonant active

cavity, and 3) the coupling irises. These will be com-

bined to obtain a matrix description of the over-all

amplifier and its gain. Such a description yields the gain

as a rational function of a frequency displacement vari-

able, permitting more detailed analysis as well as an

examination of a number of design problems.

The present analysis is basically concerned with an

iterative structure, since we feel that the practical ad-

vantages of such structures outweigh their limitations.

Furthermore, the active iterative filter, with proper

control of the intercavity isolation, yields a much more

satisfactory gain characteristic than the corresponding

passive filter. The cryogenics present difficulty in tuning

adjustments on an operating amplifier, providing one

potent argument for structural simplicity.

II. MATRIX DESCRIPTION OF THE ISOLATOR

The isolators will be modeled by nonreciprocal trans-

mission lines assumed to have the same characteristic

impedance for waves in either direction and the same

phase constant ~ but differing attentluation constants
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al and 0+ The electrical length will be assumed to be fre-

quency independent. 1 Thus the isolator will be described

by a chain matrix A,, such that

A i* = ealz~,e -- ~(+)&

r cosh (a(+) + yj$l~, Zi, sinh (a(+) + jfl)l~,

1 ()1.

where

0!1 + a?
~(+) = ——— . (2)

2

The isolator matrix .4 ~, may be factored into a non-

phase-shifting (or resistive) portion and a phase-shifting

(or line-like) portion as indicated in Fig. 2. Thus

A,, = [Z’] [x,.] (3)

where

~t, = ealzis
[

cosh (0/J z,, ~,inh (0/,)

1
e-’/’ (-la)

,

1~ sinh (0/J cosh (0/J
%8 J

and

o = (al + a,)zi.. (5)

The ~,, matrix may be represented by various equiva-

lent networks which must include gyrators or equiva-

lent nonreciprocal elements.

Note that the isolator transmission line (of charac-

teristic impedance Z,,) may be shifted ‘(across” the Xi,

portion of the isolator because their matrices are com-

mutative.

–“s--l-l

--Lu-=-
RESISTIVE LOSS-FREE LINE

NONRECIPROCAL
NETWORK

Fig. 2.

I ‘rhe ~ctual variation in electrical length with frequency intro-

duces an additional bandwidth narrowing as in a passive filter [61
and may be included in much the same way, bu( only at the price of
considerable complication in the analysis. This IS because it becomes
a selective element which, unlike the &/2 cavity, is not activated.

III. A NETWORK DESCRIPTION OF ~mz lL![.AsER

CAVITY INCLUDING THE COUPLING IRISES

The passive isolator-deactivated structure strongly

resembles the filters discussed by W. W. Mumford [6],

although we consider iterative rather thur maximally

flat couplings. We would follow a modified Mumford

analysis except for the following two reasons: 1) he

derives an equivalent lumped-parameter resonator as a

parallel tuned circuit rather than a series tuned circuit,

and Kyhl [7], [8] has already illustrated a series type

representation for a one-port &/2 maser reSOnaltOr which

compares closely to our two-port circuit; and 2) we

wish to make the transformer action of the irises ex-

plicit rather than implicit, as in M umford’s paper, be-

cause we feel this demonstrates more clearly their rela-

tion to the negative resistance gain.

A. The Maser Cavity

In the interest of brevity we will use a semiheuristic

approach to the development of the narrow-band

equivalent network for the masering cavity. A more

rigorous (and lengthy) development basecl on transmis-

sion lines is presented O’ Meara [la ]. First, note that

rnasering action is usually a rather weak effect, the re-

sulting imaginary component of the susceptibility being

typically less than 1 per cent of the real part. Thus we

look for an equivalent network based on a small per-

turbation of known equivalent network representations

of passive AV,12 cavities. Such a cavity is conveniently

represented in the low-pass case by a single series in-

ductance plus an inverting transformer. This trans-

former, which plays no essential role in the operation of

these amplifiers will be ignored in subsequent develop-

ment. The im ~edance of the ea uivalent series element is

[9], [10] ‘

rKg
zc=s — (6)

00 Y.

where Kg is the guide wavelength factor

‘g= [1-i!i3T’ (7)

and FO is the (passive) characteristic admittance of the

guide. The frequency variable s represents the displace-

ment from center frequency. NTOW, assuming that this

equivalent inductance is the result of a magnetic energy

storage throughout the rnasering volume, the active

impedance should be directly proportional to the active

permeability y

P,* = Pr(l + x) (8)

where the susceptibility y x is assumed to be complex (as

a result of masering action) and small (t~rpically of the

order of 10–z). The susceptibility is assumed to be

(9)
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where the parameter ~~tf is the peak value of the absorp-

tive-emissive component, ~ is the reciprocal of the ma-

terial half-line width, and

is the frequency departure from the material line reso-

nance center frequency wm. Under these assumptions

the rnasering impedance may be approximated as

z. ___.++s(s.0+3-$+:——
1

s+—

1

1

- (ha)

where

s = jAum = j(~ — tin) (llb)

)Smo = j“wmo = 3“(% — 00 , (llC)

and where w~o is the frequency displacement (if any)

between the line resonance and the hQ/2 resonant fre-

quency, i.e.,

Wmo = am — OJo. (lId)

If the cavity resonance frequency at w. and the line

resonance at w~ are sy-nchronously tuned, the s~O in

(1 la) vanishes, giving an effective ‘series impedance

r Xm’’tio 7
I I

rKg I 27
zm~— s—

1’
(12)

@oY.

1
s+—

T 1

This impedance has one equivalent-network representa-

tion as illustrated in Fig. 3. When short circuited on one

side, this network is a low-pass equivalent to the (one-

port) Fig. 2 network of Kyhl [7], if Kyhl’s series

inductance is resonated.

On the other hand, if the maser line center frequency

w~ is tuned to the operating frequency w as in a tunable

maserz then s in (1 la) vanishes giving

rKg

[

Xm”ao
zm=— Smo — —

W. Y. 12“
(13)

Now if we redefine s~O in (13) as s, comparison to (12)

demonstrates that we have in effect obtained infinite

linewidth in our tunable maser. One may define an

equivalent Q for this ‘(tunable” maser by the definition

UOLO
Qm. =

Q. -1

.

()

“:-l–— . (14)
2 (Rm – R.) xm” Q.

The tunable situation, corresponding to (13), will be of

dominant interest in this paper.

2 This is most generally effected by changing the magnetic field.

B. The Coupling Irises

If the cavity were operated without coupling irises,

the band-center frequency would be the A~/2 resonant

frequency. However, the irises, which are needed to

obtain reasonable gains, also introduce a detuning

reactance X~,, as may be seen from the equivalent

transformer and transmission line representation3 of

Fig. 4. These iris reactance are easily eliminated by a

frequency translation

2xir
3=s —j—

Lo ‘
(15a)

where for an equivalent iris line impedance of 1Q

b
Xi, = —

l+ b’”
(15b)

If tio is the percentage frequency shift associated with

this translation, or in other terms the fractional separa-

tion between the h~/2 frequency and the operating fre-

quency, then

– 2xi, –2b
8.=——=

CUOLO (1 + b2)mKo ‘

‘.’-(’+)’O
Lo= %r-1

(16)

-27
cm.

L,’rn W,

Fig. 3—An approximate lumped-parameter representation of a ?./2
maser cavity with the cavity synchronously tuned to the maser lure,

——
#i, =- ton-ib X,r. ~ N=(l+b21”2

,-~z

Fig. 4—Approximation equivalent network representation of the
maser cavity and its coupling irises (with infinite linewidth ).

? Note that all reactance and line lengths are assumed to be
frequency independent in this representation. This network is a
special case presented by G. G. Montgomery, et al,, Fig. (4.22a),
D. 1(17.[91.with. . ..

ZII = Z,, = Z12 = –jb–l,

4 This frequency translation is an expression of the iris detuning
effect upon &/2 cavity.
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IV. THE EFFECT OF THE IRIS TRANSFORMERS AND

THE EFFECTIVE ISOLATOR LINE LENGTH

The ideal transformers of Fig. 4 may be removed by

increasing all maser impedances by a factor of N, where

N2=l+ b’, (17)

giving the equivalent network of Fig. 5 with an effective

maser impedance, z~, normalized to a one ohm cavity

impedance, such that

~m = N’Z. z N’(sLO + Ro – R.) Y.. (18)

The function of the iris-transformers can thus be re-

garded as that of increasing the effective negative

resistance so that the effective power generated by the

source current flowing through this negative resistance

may be appreciable, compared with the source power.

In this way, reasonable gains are obtained. In payment

one accepts an enhanced inductance which reduces

bandwidth. The maser-cavity-transformer portion of

the microwave network may now be described by a

transmission matrix

o

H

J

8ir

(19)

Fig. 5—A network representation for the combined amplifier.

The frequency independent lines at the beginning and

the end of the amplifier- of Fig. 5 introduce phase shifts

only, but the internal lines are another matter. These

lines may be shifted (as mentioned in section II) to

either side of a reduced isolator and combinecl. Since we

wish degenerative feedback at midband, the net phase

shift in a signal passing round trip from one maser

resistance through two irises and the isolator should be

180 degrees. In other terms, we require a total forward

path (midband) phase shift of

0<0 = 0,8 + 2oi?. =

Further, as will be shown, a

f r/2 rad. (20)

frequency independent

phase shift of 7r/2 is a sufficient condition for symmetry

in the gain frequency function. From the equivalent

network of Fig. 4, we see that the phase shift from two

irises,

20i, = – 2 tan–l b, (21)

is a function of b and hence of the required transforma-

tion ratio N. Thus (21) specifies the required isolator

line length under normal circumstances.

I-Henceforth, the iris and isolator phase-sh~,fting lines

will be combined and considered as a portion of the iso-

lator. Note that the forward attenuation f~”’~is intro-

duces only a loss constant, in the over--all transmission

matrix, and will be ignored in subsequent development.

Under these assumptions and with the isolator charac-

teristic impedance normalized to one ohm, (3) may be

written as

[A,,] = jc’qz,], (22)

where

[Z,,] =
[

sinh 0/2 cosh 9/2-

1
(23)

cosh 0/2 sinh 0/2. “

Thej multiplier maybe shifted to the end of the network

or its matrix representation, resulting in an additional

amplifier phase shift which, however, cloes not other-

wise affect the amplifier gain characteristic. The re-

maining isolator matrix (23) still contains the both

isolation properties and the impedance inverting prop-

erties normally associated with hg/4 lines.

V. THE GMN-FRE~U~NCY FUNCTIO ~ OF THE OVER-ALL

AMPLIFIER AND SOME D ~G~N~RATE CASES

Consider the over-all amplifier consisting of J1-identi-

cal maser and isolator cavities coupled with identical

irises, such as just discussed. One may avoid tedious

expansions by utilizing the results of the existing theory

of iterated networks [11], [I 2 ]. The simplest method

commences with a unitary matrix as the basic trans-

mission block. Thus, using (22) the over-all transmission
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matrix for M cavities and M isolators becomes

= (j) Me-M9/2

[ 1
sinh 8/2 (cosh 0/2 + z~ sinh 0/2) ‘r

(24a)
cosh 6/2 (sinh 6/2 + zn cosh 0/2)

where

zm = P – d = N’(sL. + RO – R.) 1’.. (24b)

The matrix elements in the expansion of (24a) are not

of dominant interest. Rather, one desires the insertion

gain expression.

2 2
g= —.

All+ A12+ /l’l+ A’2 O,Tf
(25)

As shown by Armstrong [11], the denominator char-

acteristic polynomial P.lf is expressible as a sum of

Chebyshev polynomials. Thus for source and load

normalized to one ohm,

(j)-M H ‘;0,>, = 2TJf(x) + (al, + a2J 17M-I(x)

= 2 Tin(f)

~ ~ ~ [jzH’” + x(I – H)] UM-I(X), (26a)+—————

where all, apl, azl and a~~ are the matrix elements of

(24a),

H = ~–~ (26b)

and

1
x = ~ [all + azzj

&l/2
= ~~

[ 11–H+(1+Z7); . (26c)

By letting P =~fl and expressing d in terms of an equiva-

lent single cavity gain g.s a more useful expression for

x is obtained

_g–112

[

(1 + Il)il

(

I+ Ii
J$= –~

)1

—–2H . (27)
2 2 go.

Note that T,, and U,V_l in (26a) and (26b) are Cheby-

shev polynomials of the first and second kinds [13].

5 It must be recognized that because of the extra isolator in the
actual amplifier the forward gain or voltage transfer function will
differ from that of (24a) by some phase shift factor. However, the
magnitude of the forward gain function is not changed by these
terminal isolators, except possibly for a small, constant reduction
in gain resulting from forward isolator loss.

TM(Z) = Cos (M CoS-l x) (28a)

sin (.M cos–l z)
uM_l(2) = —

~l–xz “
(28b)

The second definition differs somewhat from that used

by Armstrong [11].

Some properties of (26) are worth noting. Because

~hI k of degree Al while TIM-1 is of degree M – 1, one

polynomial is even while the other is odd, and conse-

quently Tjr(x) and j U.T~-l(x) are either both real or both

imaginary (for real P or s). Thus the gain is a function

of a polynomial in P with real coefficients and conse-

quently the magnitude of the gain function is symmetri-

cal (about P/j = O), a consequence of our choice in effec-

tive isolator line length.

Several degenerate cases are of interest. If the iso-

lators and the maser resistance are deactivated, then

H= 1, g., = 1 and (27) becomes

Pfl
x=j; =j—=— —

2 2
(29)

and the absolute value of the insertion gain reduces to

I ?5] = [1+ (’)’ik(y-’”. (30)

Allowing for the difference in notation in both fre-

quency variable and the ordering of the Chebyshev

polynomial (30) agrees with (186) of Lawson and Fano,G

representing the A/4-coupled cavity chain.

Let the isolation become very large, such that H+O.

The gain function becomes

‘=’2=(*+:4)”’ (31)

Thus the over-all gain function becomes simply the

product of the individual cavity gain functions.

Eq. (27) has been used to compute the characteristic

polynomials, O.W,

(32)

corresponding to the inverse gain function, for flf vaIues

1 through 4. The results (powers of j are deleted) are as

listed in Table I. Of particular interest is the fact that

the constant term is KO = 2 (33) while the leading term is

1 + H ii–l

()
Km= —

2“
(34)

For H= 1 (no isolation) and d = O, the filter reduces

to a passive reciprocal filter with characteristic poly-

nomials as listed by O’Meara [la], [15].

6 See page 681 of Ref. 14.



7%54 O’Meewa: Coupled-Cavify Transmission Maser-Analysis 341

TABLE I

CHARACTERISTICPOLYNOMIALSOFTHEACTWE Fm’rrm

M
_——

1

2

3

4

5

O.w

=+[3m+2]

= +[(1 +H)zm’ +4zm +4]

= +[(1 – H)%m3 + 2(1 + H)(3 – H),ntz + 12:m + 8]

[

= + (1 + H)’zm’ + 2(1 + H) ’(4 – 2H)Z.,3

+ 4(1 + H)(6 – 3H + 17’)s,,,’ + 32z~ +

I
= & (1 + H)’z~5 + 2(1 + H) ’(5 – 313)z~4

+ 4(1 + H) ’(1(1 – 8H + .3H2)z~3

1
+ 8(1 + H)(10 – 6H + 3H’ – H’),.,’

,+ 802. + 32 I

1
16j

VI. THE “OPTIMUM” ISOLATION FCTNCTION FOR THE

GENERAL AMPLIEUER

With more than two maser cavities, sufficient freedom

does not exist under the assumptions (identical isolators

and identical irises) to achieve any desired gain func-

tion, e.g., equal ripple gain with prescribed ripple. Thus

other techniques must be found for choosing the isolator

round-trip attenuation to produce a desirable gain-fre-

quency function. This is a central problem of this paper.

It is known from (31) that excess isolation results in a

gain-function pole distribution with the poles nearly

coincident [16], producing an excessively rounded gain-

frequency function, with an excessively shrunken band-

width. On the other hand, an extreme deficit of isolation

will lead to instability. However, under-isolation has a

more immediate effect in producing both a large gain

peak at the band edges, and excessive ripple elsewhere

in the pass band. An ‘(optimum” intermediate value

of isolation exists which compromises between these

two conditions.

One method of choosing the isolator round-trip atten-

uation would be to establish first order flatness in the

gain frequency characteristic. This technique proved

prohibitively laborious, both in deriving equations and

in solving them for JI >4. However, the M = 2 results

are illustrated in Fig. 6. The M = 2, 3, and 4 cases are

available to the interested reader in O’ Meara’s re~ort.
[la].

Some lower and upper bounds upon the isolation de-

veloped by O’lJIeara [la] are illustrated in Fig. 6. [Un-

fortunately, the limits are sufficiently widely spaced

that the practical problem of finding an optimum H for

a given go, is not yet solved. I-Iowever, it is possible to

compute gain-frequency functions for specific cases and

thereby estimate optimum isolation. As an example,

consider the gain-frequency curves of a 10-cavity maser

illustrated in Fig. 7. Observe that the optimum round-

100
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z
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a
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I
iil G,isonly approximately given by the product of the

PASSIVE NON-ISOLATED ROOTS

ACTIVE NON-ISOLATED ROOTS individual cavity gains Gof

ACTIVE ISOLATED ROOTS
(NEAR MAXi MALLY FLAT RESPONSE)

ACTIVE 1000/. ISOLATED ROOTS o — /+. 4 GO’ = (go,,)‘if = (~)’” (35)

A’
/ ‘o- —~ since the inverse feedback action associated with non-

A-
)’/-

vanishing H values reduces the gain somewhat below

D / ~ *—_- -4 this value. This is a price one pays for the considerable
/*+

gain bandwidth improvement and the slight sensitivity

m~ improvement associated with a proper choice in isola-

-,~:. \ “ tion. The over-all 10SS9 in gain GL may be expressed as

\ \\’~-
\

\
\ o+—’- .-~

[11
GL = 20 logl~ ~ ..O

b, ‘ b\ 011 H==O
- .

\ — ‘=

‘ <+, ‘20’0’’0[1 -r:b’gdd ‘3’)
o +’-—=- -A

where F,~I(17, d) is the difference in the polynomials OM,

Fig. 8—A root-locus description of the isolater action
(7-cavity amplifier). [1F.w(H, d) = ‘M–l OM II–oiw,=0 . (37)

~=11 H=o

trip isolation for this amplifier falls in the range’ With normal designs, of moderate to large gain, the

0.4< H <0.43 contributions of terms in (37) containing powers of H

beyond the first are quite small and consequently a good
and one pays a price in excess bandwidth shrinkage or approximation to (36) may be shown to be
excess gain ripple for H values which fall very far under

or over these limits. From similar computations, it is G~ + 20 log,, [1 + (M – l) H(g.s – l)2]dB. (38)

estimated that near maximally flat isolation values fall

on the design curves illustrated in Fig. 6.

Root locus concepts may serve to give a better under-

standing of the isolator function, as indicated in Fig. 8.

The roots of 0,11(~), in the passive nonisolated case,

will fall on a contour in the complex p-plane illustrated

by position “A.” If one first activates the amplifier,

leaving the isolators inoperative, however, all roots are

shifted equallyg to the right in the P plane, with some

or all of the roots shifting into the right half plane, as

illustrated in the ‘(B’7 position. Instability y thereby re-

sults. The effect of large isolation is to make all the roots

coalesce to a point “D” on the real or axis. Therefore, in

the root locus migration, with increasing H, all roots

must eventually cross back into the left half plane,

restoring stability. .The ‘{optimum’7 H might thus yield

the intermediate position illustrated as C of Fig. 8. This

root-locus diagram also illustrates why the bandwidth

of the final amplifier is less than that of the passive

filter. The quantitative aspects of bandwidth shrinkage

will be considered in a later section.

VII. GAIN Loss

Unfortunately, the over-all effective band-center gain

Table I compares some values of gain loss computed via

(38) to the exact values. It is seen that (38) errs on the

pessimistic side.

TABLE II

SOMECOMPUTATIONSOZJGAIN Loss RESULTINGFROM
INVERSEFEEDBACK

GL(db)
M g.. H go’(db) g.(db)

Exact I Via (38)

10 1.53 0.4 36.95 32.13 4.82 6.08
.—

10 1 .5.3 0.15 36.95 34.45 2.50 2.79

4 3.0 0.20 38.2 28.0 10.2 10.62
.—

6 2.0 0.333 36.1 28.6 7.5 8.53

VII I. TUNABLE BANDWIDTH AND SENSITIVITY

The basic reasons for using more than a single cavity

in any negative resktance amplifier are twofold: 1) to

improve gain bandwidth, and 2) to reduce the gain sensi-

tivity to variations in activity (e.g., pumping). Each of

7 The value H= 0.43 gives a single excess gain peak of approxi-
mately 0.12 db at Q = 0.190, while H= 0.40 is monotonic. g This loss in gain is entirely from feedback action; the loss re-

8 Assuming all cavities are equally active. This is called a “pre-
distortion” transformation in filter theory.

su Iting from forward isolator attenuation must be computed and
added separately.
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these points will be discussed in more detail in the sec-

tions which follow.

A. Bandwidth Considerations

There are two aspects of tunable bandwidth to be dis-

cussed. The first involves the practical problem of find-

ing the theoretical expected bandwidths of the acti-

vated, isolated amplifiers and of relating these band-

widths to other parameters, more easily measured, of

the corresponding passive filter. The second aspect con-

cerns the gain-bandwidths obtainable with this particu-

lar structure and compares these to some competitive

amplifiersl” and to theoretical limits.

Although most of the bandwidth measures given

below will be given in terms of normalized bandwidth

flfl, these are readily converted to true bandwidths via

the equation

(39)

where Q~, is the effective Q as already defined by (14).

It is convenient to have a means of finding the poten-

tial active bandwidth by passive (outside the dewar)

measurements. The unloaded filter outer peaks shift but

little with internal losses, providing a good measure of

bandwidth. The outer peak is given by

()?r
QP=2COS —– .

M+l
(40)

In contrast, the outer peak of the loaded (passive loss-

free) filter may be obtained from (30) as

(’J!dp’=2cos ~.
M}

(41)

Although no general, exact formula for bandwidth has

been found for the active-isolated amplifiers with inter-

mediate values of isolation, there is a way of estimating

bandwidth for responses which approach maximal flat-

ness; that is, responses which are as flat as permitted

by the constraints. Note from (2(5) that the gain is of

the form

where

of A-o,

in the

g = 2 [K@f + . . . Fo]-l (42)

KI1 is as given by (34) while Kc is the surrlmation

as defined in (33), plus the contributions from d

other terms of (32). Consequently, the midband

gain is

&o = 2( ZO)–1, (43)

10 It is the ~ain.tunable bandwidth of the maser which compares

most nearly with the (instantaneous) gain-bandwidth of the tunnel
diode and the parametric amplifier.

If the maximally-flat response conditic,n yields a dis-

tribution of poles approximating a semicircle in the left

hand P plane (i.e., a pseudo-Butterworth distribution)

then the mean radius of this circle, which is obtained

from the product of the complex roots, is a good measure

of the 3 db half bandwidth.11 Thus, the normalized full

“Q” bandwidth is approximately

7?0()
lIM

flf142G = 4go-l@f(l + 17;l ( L–J1)lH. (44)

This full bandwidth may be normalized relative to the

3 db full bandwidth of a single passive (cavity, giving

For hf = 2 the bandwidth expression (45) is exact. As

another example, the isolation value of H= 0.4 which

corresponds very closely to a maximally-flat response

with 32 db gain in a 10-cavity maser, yields a normalized

(Qpr) bandwidth of 0.505 while (45) predicts a band-

width of 0.502. By increasing H to 0.43 o,ne may widen

the relative bandwidth to approximately O.615 at the

price of a 0.12 db gain ripple over the bandwidth. Al-

though the bandwidth shrinks less rapid]y than with a

100 per cent isolated system, it still remains smaller

than that of the passive filter.

Substituting (39) in (45) gives the (denormalized)

relative bandwidth B. as

1 go, (1 + H) (1--Jf)/Jf

()
BT=— — ——. .

Q~. g.. (go, – 1)

(46)

The resulting increase in B, with increasing M is illus-

trated 12 in Fig. 9. The increase with ,Jf i:s very rapid at

first, becoming nearly linear at higher values of M. The

limiting behavior is explored in the Appendix. It is

therein shown that for large M

(l?,Q.,) = & .
0

(47)

This value is illustrated in Fig. 11 and therein compared

to more exact curves based on specific computer results.

It is interesting to compare (47) with one kind of

theoretical limit, which is structure independent. As

mentioned in the introduction, maser negative resist-

ance gain action may be regarded as al type of inverse

incidental dissipation. It has been long known that

small values of incidental dissipation (either positive or

II & tile act~lal critical frequency distributions tend to be some-

what elliptical (which the major axis in the Q direction) this assump-
tion generally gives a pessimistic estimate of bandwidth for M> 10.
However, computer checks indicate that (W) ia a good compromise
for most design values.

1’zThe curves are based on specific values of M, g., ancl H asso-

ciated with specific computer examples.
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Fig. 9—Some approximations to tunable percentage bandwidth as
a function of number of cavities (with constant over-all gain as
a parameter).

negative) may be well approximated in terms of the

group delay function Tg, and the cavity Q of a band-pass

filter as [5], [19]

8.69w.Tg(mJ
G~~ & ——

2Q ‘
(48)

Now it is also known that the maximum uniform group

delay which can be obtained from M resonators may be

relate’d to the bandwidth (in cycles) BO, over which the

delay is uniform, by the formula [20]

(49)

while ~ is a delay area efficiency. Cjmbining (48) and

(49) one may derive

(50)

which compares closely to, but is somewhat larger than

(47), for large q-.

An equation may be derived for the direct-coupled

Butterworth response maser [21] which, in the limit of

large M and large B, Q*, reduces to the same form as

(47). Thus, as shown by O’Meara [1 a], one obtains

4M

()
Iim B,Qm, = — —

M* m r in Go
(51)

giving a gain-bandwidth factor 27 per cent greater than

that of the isolator-coupled maser. Actually, for a typi-

cal design (an M= 10 and B,Q = 1.6) (51) gives an

optimistic result while (47) is pessimistic; the gains are

nearly identical (33.2 db vs 32.13 db).

Gain-bandwidth may also be increased by compensa-

tion with passive network elements [22 ], [23] (i.e.,

cavities). However, as one usually does not double the

bandwidth (a 30 per cent increase is more typical) by

doubling the total number of elements (one passive for

each active element) and as it costs little more to insert

an active as opposed to a passive cavity in a dewar, it

appears that there is very little point to these compensa-

tion schemes with masers. 13

B. Send iuity

A fundamental problem with all negative-resistance

amplifiers is that small changes in negative resistance or

loading produce relatively large changes in gain. The

maser amplifier provides no exception, although it is

usual to operate in a saturated condition such that

changes in pump power have relatively little influence

on negative resistance [16].

While the computation of the exact gain sensitivity is,

in general, tedious, some special cases are relatively

simple. The easiest is for infinite (~= O) isolation. With

infinite isolation, the over-all band-center gain Go is

given by (35). Thus the gain sensitivity S~~ at band

benter with respect to changes in R~ (or x~”) is [la]14

dG./Go
sr,nG”(Q= o)

d(rm)/rm
= g.ilf(d + Ro)

()Rm
= 2&f(G01/?M _ 1)

R. – Ro
. (52)

This result agrees with Stitch’s (20C) [1 8], with 31=1,

as it should. On the other hand, as M becomes large

it is readily shown that

lim 2M(GOljz’fr – 1) = in GO (53)
,11+ m

and, therefore

()lim 5’.,mG= ~ in G. (54)
‘?+. Y%— r.

H It should be emphasized that we refer only to the problem of

increasing tunable bandwidth. Compensating for instantaneous
bandwidth is another matter.

14The ~orreSPondin~ sensitivity for a coupled S(3%3S of reflection

type cavities is given by Kyhl and Strandberg [17] (in the notation
of this paper as (dGO/Gu) (dr~ /Yin) = flf(G112Jr — G–112-~f). The h~ factor
in Strandberg’s (15) was omitted and he presumes rO= O. The reflec-
tion type cavity series has the advantage for low values of M, but
this advantage rapidly vanishes as M becomes modestly large.
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which is the same result as for the traveling wave maser,

as given by De Grass, et al. [2], if resildual losses are

included in the traveling-wave formula. Ignoring the

factor [R,n/R~ – R.) ], the H= O sensitivities for M= 1,2,

4, 8, 12 and cc have been computed from (53) and (54)

and plotted in Fig. 10. It is seen that IU cloes not have

to be very large before the traveling-wave sensitivity is

approached rather closely.

None of these results has obtained any advantage

from the potential inverse feedback acf-ion associated

with finite values of isolator ratio. Some special cases

are discussed by O’h!Ieara [la] and one of these is

illustrated in Fig. 10. One sees that irnprovement is

possible and one may decrease the sensitivity slightly

below that of the traveling wave maser. However, the

case illustrated corresponds to more feed!back than one

can afford to use from a gain-frequency control view-

point.

The sensitivity with a value of isolation corresponding

to a near optimum H in a 10-cavity maser has been

computed for one particular gain value (31.7 clb) and is

plotted as a single point in Fig. 10. It falls almost on

top of the curve for the traveling-wave maser.

One may question if the sensitivity is a good measure

of the actual gain changes and if so over what ranges.

Fig. 11 compares the actual gain changes occurring with

a 10-cavity maser and a pure traveling-wave lmaser for

variations in T,. measured in db. It is seen that the two

curves are nearly identical with the 10-cavity maser

having an almost insignificant advantage. As both

curves are nearly linear over a range of 5:1. db variation

in R~ (or x~”), the sensitivity is indeed a good measure.

Similar computations near the band-cd ge frequencies

of the 10-cavity maser yield lesser variation in gain.

IX. CONCLUSIONS

The maser amplifier which has been analyzed proves

to be fairly complex in spite of numerc~us approxima-

tions and the fact that many degrees of’ freedom have

been eliminated by the choice of an iterative structure.

Consequently, exact theoretical formulae are not avail-

able for all parameters of interest. Hcm7ever, certain

interim conclusions may be drawn. Probably the four

most significant conclusions are the follcming:

1) Unlike the nonisolated iterative passive filter, the

band-pass ripple may be held tc) quite low values

by the proper choice in round-trip isolation.

2) The product of gain in db and relative bandwidth

is linearly proportional to the number of cavities

(in first order theory) if the number of cavities is

reasonably large, given optimal isolation values.

3) The gain-tunable-banclwidth product obtainable

with this structure is comparable to that obtained

with competitive structures (using equally active

cavities or reactive elements).
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It may often be good practice to employ a larger lnH= – K In gO~ (57)

number of cavities than dictated by gain-band-

width requirements in order to improve stability,
where K is a constant whose exact value is uncertain,

that is, to reduce the sensitivity to cavity loadings
but lies roughly in the range

or activity (e.g., pumping). 2< K< 2.5.

Although we have not succeeded in developing exact Using a series expansion for H values near unity

formal equations for either round-trip isolation or band- ignoring the second order distinction between g..

width, by combining computer results and various g.. gives

approximations we have been able to prepare design

curves which should permit a choice in these parameters

(

K In Go
l+H= 2–Klng0. =2 l–

sufficient for normal engineering applications. )4M “

(58)

and

and

(59)

APPENDIX Since the go, – 1 factor in (55) is small to begin with,

LIMITING GAIN-BANDWIDTH AS THE NUMBER OF
second-order corrections of the form (56) become im-

RESONATORS BECOMES LARGE
portant. Thus

From (46), it is noted that
gos

[ 1
;. (go, – 1)-1 = 1 – ~ +1= ‘1

‘Q.=ti)(fi)(’-’’)’M ‘“)

go,

‘[1 ‘%1’z in GO
Also note that the difference between go. and go. is a

second order effect in the parameter (In Go/2 M). Spe- Substituting (59) and (60) in (55) gives a

cifically, it is readily derived from (38) that approximation

‘-:=H(%)=(%’1 ’56) ‘-:%+(1 -3%11
Second, note from Fig. 6 that an optimum His related M

. . —

to g.,, roughly as

Zi,

A.

b = B/ZO

B, = “~b – ‘~b’
&lo(l + 8)

d = N’(rm – ro)Y.

go = dG.

go,
GL

go. = (go)’ /*f

Gdb
17 = exp (al + CLj)li.

‘g= “0’’)2=[’ -+(:}11
rKg

LO=—
Uo Y.

.-
ln Go

(60)

large M

(61)

LIST OF SYMBOLS

Matrix element of the over-all amplifier matrix.

Transmission matrix description of an isolator.

A reduced isolator matrix which includes the inversion and isolation

functions of an effective A/4 isolator but excludes phase shift effects,

The resistive part of an isolator matrix.

Transmission matrix describing a maser cavity.

Normalized iris susceptance.

Relative bandwidth of an N-cavity maser,

A transformed effective maser cavity resistance; also a predistortion

shift in the complex frequency plane (assuming a normalized cavity in-

ductance of 1 Henry).

Band-center transducer voltage gain of an M-cavity maser.

Band-center transducer voltage gain of a single-cavity maser.

Gain 10SS (in db) as a result of inverse feedback action.

Band-center effective transducer voltage gain of a single-cavity in an

M-cavity maser.

Over-all power gain in db,

Round-trip attenuation of a single isolator as a voltage ratio.

Guide wavelength factor.

Equivalent low-pass inductance of a h/2 cavity.
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N=l+b2

Ojf = ~ Kk(z,n)~

p=. +jfl

~m=L=g

Xm” m

w.L
Qm, = —

[(
+1

2 (Rm,–Yo)= ~n/’
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Number of maser cavities.

Turns ratio of the effective transformer in a transformer and line repre-

sentation of an iris.

A polynomial in Zn, whose reciprocal gives the transducer gain.

Normalized low-pass complex frequency variable.

Maser medium Q.

Ro ‘1

)1

Effective Q of a resonant network representing a waveguicle filled with
.—

R,,, a medium having a susceptibility Xn.

R.

R.

s

sm. = j“(wm — @.)

d[ln k]
slk = ———

d[ln Z]

Tin(x)=Cos (M Cos-1 x)

sin (M cos–l x)
u.-,(x) = —

<1 – .Y

H-’/2
~=j —

[
1–H (l+ H);

2 1
x,,
Y. = (2.)-1
Zm=sLo+Ro– Rrn

2. = NzZmYo = p–d

al

~z

al + a2
a(+) =

2

6 = Llw/%

AUO=U– W

Awm=w–um

(J.O = urn — U*

6’ = lnH = (al + CW)l,S

0,8

6*V

A,

I&

/b-* = /Jr(l + x)

7

x

Xmtf

A residual (passive) loss resistance in a A/2 maser cavity resulting from

wall or dielectric losses.

A resistance introduced by the maser action within a material filling a

waveguide.

A low-pass or displacement complex frequency variable.

Frequency displacement between the line resonance center frequency

and the (iris-short-circuit) cavity resonant frequency.

Sensitivity of k to the parameter 1.

Chebyshev polynomial of the first kind.

Chebyshev polynomial of the second kind.

Complex argument of a Chebyshev polynomial.

Equivalent series reactance resulting from an iris susceptance.

Characteristic admittance of a passive waveguide or line,

Effective series impedance representing a k/2 maser cavity.

Effective transformed low-pass impedance of a k/2 maser cavity,

normalized to the waveguide characteristic impedance of.

Forward path attenuation constant in an isolator-wavegraide section.

Backward path attenuation constant in an isolator-waveguide section.

Average attenuation constant.

Relative frequency shift resulting from iris detuning.

A frequency departure from the h/2 resonant frequency.

A frequency departure from the material line center frequency.

Frequency displacement between the line resonance and the hg/2

resonant frequency.

Round-trip attenuation of a single isolator in nepers.

Electrical length of the isolator, in radians.

Electrical length of the effective line in a transformer and line repre-

sentation of a single iris.

Guide wavelength.

Relative permeability of a passive medium.

Complex permeability of an active maser medium.

Maser material reciprocal half-line width.

Complex susceptibility of a maser medium.

Peak value of imaginary part of x.
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Band-pass frequency variable.

Cutoff frequency in a waveguide.

TECHNIQUES

Maser medium line center frequency.

Passive iris-short-circuit h/2 resonance frequency of a line or cavity.

A normalized low-pass frequency variable.

Outer-peak (normalized) frequency of a loss-free unloaded passive filter.

Outer-peak (normalized) frequency of a loss-free loaded passive filter.
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