The Coupled-Cavity Transmission Maser-Analysis

T. R. O'MEARA

Summary—This paper discusses an analysis of a maser amplifier
structure (developed at Hughes Research Laboratories) consisting
of a cascade of iris-coupled =/2 cavities intermixed with isolators.
Starting from the basic media susceptibility, narrow-band equivalent
networks and matrix representations are derived for maser and iso-
lator cavities. A rational function approximation to the over-all gain
function is thereby derived by matrix methods. From one viewpoint,
the over-all amplifier may be regarded as a negative-resistance in-
verse-feedback amplifier. The key design parameter is shown to be
the isolator round-trip attenuation. Excess isolation yields an overly
rounded gain-frequency characteristic, while deficient isolation
yields a characteristic with excess ripple or instability in the extremie
cases. The feedback effects associated with intermediate “optimum”
values of isolation reduce the effective gain per cavity below the
normal gain of a single cavity, but in return one obtains a reduced
gain sensitivity which may be reduced to a value comparable to or
lower than that of the pure traveling-wave maser.

I. INTRODUCTION

g HE MASER amplifier structure to be discussed
Tin this paper is illustrated in Fig. 1. Details of
— construction are discussed in a companion paper
[1]. It is a slow-wave microwave structure containing
an activated or pumped-maser material with inter-
spersed isolators, commonly known as a traveling-wave
maser. From one viewpoint, the “slowing” structure
slows the excitation wave sufficiently to permit a larger
interaction with the maser material [2], [3], [4]. A less
documented viewpoint is to regard maser gain as the
reverse of incidental dissipation; as is well known, the
first order effect of dissipation (or reverse dissipation)
on the loss (or gain) function is proportional to group
delay [5], and inversely proportional to circuit Q.
There exist a number of weak points in the usual slow-
wave approach. The slow-wave structure power gain
has been generally computed from the group velocity
or slowing factor which, in turn, is generally computed
on the assumption that there exists an image parameter
match. Since the basic structures are not image ter-
minated in an operational amplifier, the true group veloc-
ity near the band-pass edges and consequently the gain
_are subject to considerable doubt in conventional
theory. In traveling-wave masers, the fundamental
limitation on bandwidth has usually been set by the
paramagnetic resonance line width rather than by the
structure pass band. However, since the tunable band-
width of a tunable maser ¢s related to the structure
bandwidth, it is important that this be accurately
known.
In contrast to the slow-wave approach, passive micro-
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Fig. 1—The Hughes coupled-cavity maser amplifier structure.

wave filters constructed of M structures, large in wave-
lengths (A\/4 or A\/2 dimensions are common), have been
approximated by lumped-parameter networks with
considerable success [6]. These equivalent lumped-
parameter networks are much easier to analyze or syn-
thesize than their distributed parameter counterparts.

This same general approach is also applicable to ac-
tive filters including maser amplifiers, although so far
as is known, it has not been previously attempted in the
literature. With a filter approach, we may gain an under-
standing of many of the effects observed in the labora-
tory which are probably inexplicable by the usual
traveling-wave concepts. For example, one may show
how the maser activity and isolators influence band-
width and band shape.

First we will develop a chain-matrix description of
the three basic components which comprise the struc-
ture as follows: 1) the isolator, 2) the resonant active
cavity, and 3) the coupling irises. These will be com-
bined to obtain a matrix description of the over-all
amplifier and its gain. Such a description yields the gain
as a rational function of a frequency displacement vari-
able, permitting more detailed analysis as well as an
examination of a number of design problems.

The present analysis is basically concerned with an
iterative structure, since we feel that the practical ad-
vantages of such structures outweigh their limitations.
Furthermore, the active iterative filter, with proper
control of the intercavity isolation, yields a much more
satisfactory gain characteristic than the corresponding
passive filter. The cryogenics present difficulty in tuning
adjustments on an operating amplifier, providing one
potent argument for structural simplicity.

I1. MaTRIX DESCRIPTION OF THE ISOLATOR

The isolators will be modeled by nonreciprocal trans-
mission lines assumed to have the same characteristic
impedance for waves in either direction and the same
phase constant 8 but differing attentuation constants
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oy and ag. The electrical length will be assumed to be fre-
quency independent.! Thus the isolator will be described
by a chain matrix 4, such that

Ao = enlig=H e

cosh (acy + 7B8)is Zis sinh (@ + jB)lis

. (1)
—sinh (e + 8. cosh (acy + 78)is
where
a1+ as
Ay = (2)

The isolator matrix A4 may be factored into a non-
phase-shifting (or resistive) portion and a phase-shifting
(or line-like) portion as indicated in Fig. 2. Thus

A = [A][ ;] 3)

where

cosh (6/2)  Zissinb (9/2)—| et (L

A, = e%the 1 ‘1)
~——sinh (8/5) cosh (6,5 J
Zis

~ l 78 ‘Zz's 1 Z is

Ao = .COS 8 JZis sin (B1) (ah)

I sin (8);s  cos (8]):s
and

6 = (al + aZ)lis- (5)

The 4,, matrix may be represented by various equiva-
lent networks which must include gyrators or equiva-
lent nonreciprocal elements.

Note that the isolator transmission line (of charac-
teristic impedance Z,;) may be shifted “across” the A
portion of the isolator because their matrices are com-
mutative.

,<———- 954’,1
Ormemsed Smmmmase G {—0
Ais B, Zyi
o— S —0
— ~ e -~ J
RESISTIVE LOSS-FREE LINE
NONRECIPROCAL
NETWORK

Fig. 2.

1 The actual variation in electrical length with frequency intro-
duces an additional bandwidth narrowing as in a passive filter [6]
and may be included in much the same way, but only at the price of
considerable complication in the analysis. This is because it becomes
a selective element which, unlike the A\,/2 cavity, is not activated.
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IT1I. A NETWORK DESCRIPTION OF THE MASER
Cavity INcLupinGg THE CoUPLING IRISES

The passive isolator-deactivated structure strongly
resembles the filters discussed by W. W. Mumford [6],
although we consider iterative rather than maximally
flat couplings. We would follow a modified Mumtord
analysis except for the following two reasons: 1) he
derives an equivalent lumped-parameter resonator as a
parallel tuned circuit rather than a series tuned circuit,
and Kyhl [7], [8] has already illustrated a series type
representation for a one-port A,/2 maser resonator which
compares closely to our two-port circuit; and 2) we
wish to make the transformer action of the irises ex-
plicit rather than implicit, as in Mumford’s paper, be-
cause we feel this demonstrates more clearly their rela-
tion to the negative resistance gain.

A. The Maser Cavity

In the interest of brevity we will use a semiheuristic
approach to the development of the narrow-band
equivalent network for the masering cavity. A more
rigorous (and lengthy) development based on transmis-
sion lines is presented O'Meara [la]. First, note that
masering action is usually a rather weak effect, the re-
sulting imaginary component of the susceptibility being
typically less than 1 per cent of the real part. Thus we
look for an equivalent network based on a small per-
turbation of known equivalent network representations
of passive N\,/2 cavities. Such a cavity is conveniently
represented in the low-pass case by a single series in-
ductance plus an inverting transformer. This trans-
former, which plays no essential role in the operation of
these amplifiers will be ignored in subsequent develop-
ment. The impedance of the equivalent series element is

[9], [10]

P 7K, ©)
¢ =S
we Y,
where K, is the guide wavelength factor
1 /w2 !
N
Hr€r \Wo/ _

and Y, is the (passive) characteristic admittance of the
guide. The frequency variable s represents the displace-
ment from center {requency. Now, assuming that this
equivalent inductance is the result of a magnetic energy
storage throughout the masering volume, the active
impedance should be directly proportional to the active
permeability

pet = p (14 %) ®)

where the susceptibility x is assumed to be complex (as

a result of masering action) and small (typically of the

order of 10-?). The susceptibility is assumed to be
j'xm//

= 9
1+ jrAw, ©

X
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where the parameter x.,.”’ is the peak value of the absorp-

tive-emissive component, 7 is the reciprocal of the ma-
terial hali-line width, and

(10)

Awm = @ — Wp

is the frequency departure from the material line reso-
nance center frequency w,. Under these assumptions
the masering impedance may be approximated as

1 onm// Smo
52 s{ Smo + _> - + ‘l
K, T 27 T
L = (11a)
wo ¥ 1
s+ —
r
where
s = jAwy = j{o — wm) (11b)
Smo = JWmo = §{wm — ), (11¢)

and where w,, is the frequency displacement (if any)
between the line resonance and the A,/2 resonant fre-
quency, i.e.,

Wmo = Wm — We. (11d)

If the cavity resonance frequency at w, and the line
resonance at w, are synchronously tuned, the s,, in
(11a) vanishes, giving an effective series impedance

”
Xm Wo

7K, |' 27

wo ¥, 1
L ot
T

This impedance has one equivalent-network representa-
tion as illustrated in Fig. 3. When short circuited on one
side, this network is a low-pass equivalent to the (one-
port) Fig. 2 network of Kyhl [7], if Kyhl's series
inductance is resonated.

On the other hand, if the maser line center frequency
wy, is tuned to the operating frequency w as in a tunable
maser? then s in (11a) vanishes giving

7K, [ xm"wo]
L = ———| Spmo — .
woY o 2

(12)

(13)

Now if we redefine s,, in (13) as s, comparison to (12)
demonstrates that we have in effect obtained infinite
linewidth in our tunable maser. One may define an
equivalent Q for this “tunable” maser by the definition

COOLO 1 Qo -1
Qme = —— = — 1 - .
2(Rm — R xu” Om
The tunable situation, corresponding to (13), will be of
dominant interest in this paper.

(14)

2 This is most generally effected by changing the magnetic field.
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B. The Coupling Irises

If the cavity were operated without coupling irises,
the band-center frequency would be the A,/2 resonant
frequency. However, the irises, which are needed to
obtain reasonable gains, also introduce a detuning
reactance Xy, as may be seen from the equivalent
transformer and transmission line representation® of
Fig. 4. These iris reactances are easily eliminated by a
frequency translation®

’ (15&)

where for an equivalent iris line impedance of 10
b

Xirz .
1+ b2

(15b)

If 8, is the percentage frequency shift associated with
this translation, or in other terms the fractional separa-
tion between the N,/2 frequency and the operating fre-
quency, then

—2X ;s —2b
5, = = . (16)
wol, 1+ )7k,
xrlr‘m“’o
K Rm=—( 2 )Lo
-9 AV
L =
o} ono
o—~tYYY o
-1
=iz
c = -2T
m LoXmwo
o— -0

Fig. 3—An approximate lumped-parameter representation of a \,/2
maser cavity with the cavity synchronously tuned to the maser line.

L -lrm-to) }“‘ B “" '<-—G|r -—{
= Z,:=10 Z,=18
-
8, =-tanlb Xz —2 N=(142)"/2

1-b2

Fig. 4—Approximation equivalent network representation of the
maser cavity and its coupling irises (with infinite linewidth).

8 Note that all reactances and line lengths are assumed to be
frequency independent in this representation. This network is a
special case presented by G. G. Montegomery, et al., F ig. (4.22a),
p. 107, [9], with

Zu=Zo=Ip=—jb"L

* This frequency translation is an expression of the iris detuning
effect upon A,/2 cavity.
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1V. TaE EFFECT OF THE IRiS TRANSFORMERS AND
THE EFFECTIVE IsorLaTorR LINE LENGTH

The ideal transformers of Fig. 4 may be removed by
increasing all maser impedances by a factor of N, where

N2 =1+ b2 17

giving the equivalent network of Fig. 5 with an effective
maser impedance, 2,, normalized to a one ochm cavity
impedance, such that

% = N2Zy = N2(sL, + R, — Rp) Y. (18)

The function of the iris-transformers can thus be re-
garded as that of increasing the effective negative
resistance so that the effective power generated by the
source current flowing through this negative resistance
may be appreciable, compared with the source power.
In this way, reasonable gains are obtained. In payment
one accepts an enhanced inductance which reduces
bandwidth. The maser-cavity-transformer portion of
the microwave network may now be described by a
transmission matrix

(19)

-----0
0---—-0

—"
7

Zir= I\Q. eis
Q.
Kis
zis‘ 182 ? ’ Gis
o
Zip =182 ’ 8
Iz -+ ﬁ>
V2
Zm
Vi
I 4 ﬁL
Zi, = 182 ] Gir
Q
I“is
Zis =1 8

oo

Fig. 5—A network representation for the combined amplifier.

O’Meara: Coupled-Cavity Transmission Maser-Analysis

339

The frequency independent lines at the beginning and
the end of the amplifier of Fig. 5 introduce phase shifts
only, but the internal lines are another matter. These
lines may be shifted (as mentioned in section II) to
either side of a reduced isolator and combined. Since we
wish degenerative feedback at midband, the net phase
shift in a signal passing round trip from one maser
resistance through two irises and the isolator should be
180 degrees. In other terms, we require a total forward
path (midband) phase shift of

;0 = 0,5 + 20,, = £ w/2 rad. (20)

Further, as will be shown, a frequency independent
phase shift of 7/2 is a sufficient condition for symmetry
in the gain frequency function. From the equivalent
network of Fig. 4, we see that the phase shift from two
irises,

20;, = — 2 tan™1 b, 21)
is a function of & and hence of the required transforma-
tion ratio N. Thus (21) specifies the required isolator
line length under normal circumstances.

Henceforth, the iris and isolator phase-shifting lines
will be combined and considered as a portion of the iso-
lator. Note that the forward attenuation e’ intro-
duces only a loss constant, in the over-all transmission
matrix, and will be ignored in subsequent development.
Under these assumptions and with the isolator charac-
teristic impedance normalized to one ohm, (3) may be
written as

[43s] = jeo2[4a], (22)
where
— sinh /2 cosh 6/2
- | . 3)
cosh6/2 sinh 6/2.

The j multiplier may be shifted to the end of the network
or its matrix representation, resulting in an additional
amplifier phase shift which, however, does not other-
wise affect the amplifier gain characteristic. The re-
maining isolator matrix (23) still contains the both
isolation properties and the impedance inverting prop-
erties normally associated with A,/4 lines.

V. TeE GAIN-FREQUENCY FUNCTION OF THE OVER-ALL
AMPLIFIER AND SOME DEGENERATE CASES

Consider the over-all amplifier consisting of A7/-identi-
cal maser and isolator cavities coupled with identical
irises, such as just discussed. One may avoid tedious
expansions by utilizing the results of the existing theory
of iterated networks [11], [12]. The simplest method
commences with a unitary matrix as the basic trans-
mission block. Thus, using (22) the over-all transmission
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matrix for M cavities and A isolators® becomes
[Au Alz]

A Ao
012 [, ] [ 4]}

sinh /2 (cosh8/2 + #,sinh 0/2)]“ (242)
a
cosh0/2 (sinh6/2 + 3, cosh8/2)

S

where

Zm = P —d= N2(5Lo + Ro - Rm) Y”' (24b)

The matrix elements in the expansion of (24a) are not
of dominant interest. Rather, one desires the insertion
gain expression.

2 2

An+ dis+ Ao+ dse On

g

As shown bv Armstrong [11], the denominator char-
acteristic polynomial P is expressible as a sum of
Chebyshev polynomials. Thus for source and load
normalized to one ohm,

()" H —‘:—IOIIJ = 2T (x) + (@12 + a21) Upr—1{x)
= 2TM<X‘)

+ [j20172 + 2(1 — )] Usa(x), (262)

14+ H
where @iy, @12, @2 and ax are the matrix elements of
(24a),
H=¢" (26b)
and
1
—2‘ [a11 + @)

X =

H—I/Z i,

—i[1-ar ]

(26¢)

By letting p =7Q and expressing d in terms of an equiva-
lent single cavity gain g. a more useful expression for
x is obtained

—g-iir{l + HHQ 14+ H
— - . 27
e

X =

Note that T and Uy in (26a) and (26b) are Cheby-
shev polynomials of the first and second kinds [13].

5 It must be recognized that because of the extra isolator in the
actual amplifier the forward gain or voltage transfer function will
differ from that of (24a) by some phase shift factor. However, the
magnitude of the forward gain function is not changed by these
terminal isolators, except possibly for a small, constant reduction
in gain resulting from forward isolator loss.
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Ta(x) = cos (M cos™! %) (28a)
sin (M cos™ x)

U (5) = —————=——" (28b)

V1 — a?

The second definition differs somewhat from that used
by Armstrong [11].

Some properties of (26) are worth noting. Because
Tir is of degree M while Ujp_y is of degree M —1, one
polynomial is even while the other is odd, and conse-
quently T(x) and jU—1(x) are either both real or both
imaginary (for real p or s). Thus the gain is a function
of a polynomial in p with real coefficients and conse-
quently the magnitude of the gain function is symmetri-
cal (about p/j=0), a consequence of our choice in effec-
tive isolator line length.

Several degenerate cases are of interest. If the iso-
lators and the maser resistance are deactivated, then
H=1,g,,=1and (27) becomes

JBm P

5 ) (29)

and the absolute value of the insertion gain reduces to

FAR [1 + (%>2UM_12<¥) ]—1/2.

Allowing for the difference in notation in both fre-
quency variable and the ordering of the Chebyshev
polynomial (30) agrees with (186) of Lawson and Fano,?
representing the \/4-coupled cavity chain.

Let the isolation become very large, such that H—0.
The gain function becomes

G_ 2—< 2 oM
CET p+2—d> '

(30)

1)

Thus the over-all gain function becomes simply the
product of the individual cavity gain functions.

Eq. (27) has been used to compute the characteristic
polynomials, Oss,

M

Ou = 2, Ki(zn)* (32)
ko

corresponding to the inverse gain function, for A7 values

1 through 4. The results (powers of j are deleted) are as

listed in Table I. Of particular interest is the fact that

the constant term is K= 2 (33) while the leading term is

1 M1
L
2

For H=1 (no isolation) and d=0, the filter reduces
to a passive reciprocal filter with characteristic poly-
nomials as listed by O'Meara [1a], [15].

¢ See page 681 of Ref. 14.

(34)
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TABLE 1
CHARACTERISTIC POLYNOMIALS OF THE ACTIVE FILTER
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M O
1 = }[zn + 2]
2 | =3[+ H)m? + 4a, 4 4]

= 1[0 — H)%n? + 2(1 + H)(3 — H)zn? + 123, + 8]
(1 + H)%ut + 201 + H)2(4 — 21Dz,

+4(1 + H)(6 ~ 3H + H?%)3,? + 32z, + 16

5 | = & (1 + H)b 4 231 + I35 — 3H)z,t

+4(1 + H)2(10 — 8H + 3H%z,?

+8(1 4+ H)(10 — 6H + 3H? — H¥)z,2

+ 80z, + 32 J

KN

i
cojs

VI. TeE “OpTiMUM” IsoraTioN FUNCTION FOR THE
GENERAL AMPLIFIER

With more than two maser cavities, sufficient freedom
does not exist under the assumptions (identical isolators
and identical irises) to achieve any desired gain func-
tion, e.g., equal ripple gain with prescribed ripple. Thus
other techniques must be found for choosing the isolator
round-trip attenuation to produce a desirable gain-fre-
quency function. This is a central problem of this paper.

It is known from (31) that excess isolation results in a
gain-function pole distribution with the poles nearly
coincident [16], producing an excessively rounded gain-
frequency function, with an excessively shrunken band-
width. On the other hand, an extreme deficit of isolation
will lead to instability. However, under-isolation has a
more immediate effect in producing both a large gain
peak at the band edges, and excessive ripple elsewhere
in the pass band. An “optimum?” intermediate value
of isolation exists which compromises between these
two conditions.

One method of choosing the isolator round-trip atten-
uation would be to establish first order flatness in the
gain frequency characteristic. This technique proved
prohibitively laborious, both in deriving equations and
in solving them for A/ >4. However, the M =2 results
are illustrated in Fig. 6. The 1/=2, 3, and 4 cases are
available to the interested reader in O’'Meara’s report
[1a].

Some lower and upper bounds upon the isolation de-
veloped by O'Meara [1a] are illustrated in Fig. 6. Un-
fortunately, the limits are sufficiently widely spaced
that the practical problem of finding an optimum # for
a given g, is not yet solved. ITowever, it is possible to
compute gain-frequency functions for specific cases and
thereby estimate optimum isolation. As an example,
consider the gain-frequency curves of a 10-cavity maser
illustrated in Fig. 7. Observe that the optimum round-
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Fig. 6—Design ranges for optimum round-trip isolation.
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Fig. 8—A root-locus description of the isolater action
(7-cavity amplifier).

trip isolation for this amplifier falls in the range”
04 < H <043

and one pays a price in excess bandwidth shrinkage or
excess gain ripple for H values which fall very far under
or over these limits. From similar computations, it is
estimated that near maximally flat isolation values fall
on the design curves illustrated in Fig. 6.

Root locus concepts may serve to give a better under-
standing of the isolator function, as indicated in Fig. 8.
The roots of Oy (p), in the passive nonisolated case,
will fall on a contour in the complex p-plane illustrated
by position “A.” If one first activates the amplifier,
leaving the isolators inoperative, however, all roots are
shifted equally® to the right in the p plane, with some
or all of the roots shifting into the right half plane, as
illustrated in the “B” position. Instability thereby re-
sults. The effect of large isolation is to make all the roots
coalesce to a point “D” on the real or axis. Therefore, in
the root locus migration, with increasing H, all roots
must eventually cross back into the left half plane,
restoring stability. . The “optimum” H might thus yield
the intermediate position illustrated as C of Fig. 8. This
root-locus diagram also illustrates why the bandwidth
of the final amplifier is less than that of the passive
filter. The quantitative aspects of bandwidth shrinkage
will be considered in a later section.

VII. Gaix Loss

Unfortunately, the over-all effective band-center gain

7 The value H=0.43 gives a single excess gain peak of approxi-
mately 0.12 db at @=0.190, while H=0.40 is monotonic.

8 Assuming all cavities are equally active. This is called a “pre-
distortion” transformation in filter theory.
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G, is only approximately given by the product of the
individual cavity gains G,/

2 20M
G = (ga)? = (——) 35)

2—-d

since the inverse feedback action associated with non-
vanishing H values reduces the gain somewhat below
this value. This is a price one pays for the considerable
gain bandwidth improvement and the slight sensitivity
improvement associated with a proper choice in isola-
tion. The over-all loss? in gain G, may be expressed as

s=0 ]
H=0
gos M

where Fy(H, d) is the difference in the polynomials Oy,

s=0 ] .
H=0

With normal designs, of moderate to large gain, the
contributions of terms in (37) containing powers of H
beyond the first are quite small and consequently a good
approximation to (36) may be shown to be

o)
Gr = 20 10g10 |:—’A£

M

(36)

Fu(H, d) = 2M-1 I:OM — Ou (37)

s=0

G = 20 logiwo [1 + (M — 1)H(g,. — 1)2]dB. (38)

Table I compares some values of gain loss computed via
(38) to the exact values. It is seen that (38) errs on the
pessimistic side.

TABLE 11

SoME CoMPUTATIONS OF GAIN L.0Ss RESULTING FROM
INVERSE FEEDBACK

M g H | gidb) | g(db) Gr(db)
Exact | Via (38)
10 1.53 | 0.4 36.95 | 32.13 4.82 6.08
10 1.53 0.18 36.95 34.45 2.50 2.79
4 3.0 0.20 | 38.2 28.0 10.2 10.62
6] 2.0 0.333 | 36.1 28.6 7.5 8.53

VIII. TUNABLE BANDWIDTH AND SENSITIVITY

The basic reasons for using more than a single cavity
in any negative resistance amplifier are twofold: 1) to
improve gain bandwidth, and 2) to reduce the gain sensi-
tivity to variations in activity (e.g., pumping). Each of

9 This loss in gain is entirely from feedback action; the loss re-
sulting from forward isolator attenuation must be computed and
added separately.
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these points will be discussed in more detail in the sec-
tions which {ollow.

A. Bandwidth Considerations

There are two aspects of tunable bandwidth to be dis-
cussed. The first involves the practical problem of find-
ing the theoretical expected bandwidths of the acti-
vated, isolated amplifiers and of relating these band-
widths to other parameters, more easily measured, of
the corresponding passive filter. The second aspect con-
cerns the gain-bandwidths obtainable with this particu-
lar structure and compares these to some competitive
amplifiers!® and to theoretical limits.

Although most of the bandwidth measures given
below will be given in terms of normalized bandwidth
Y5, these are readily converted to true bandwidths via
the equation

1 Q 0 08
BW = —B—(”—( d >
4 Qme 8os — 1

where Q.. is the effective Q as already defined by (14).

It is convenient to have a means of finding the poten-
tial active bandwidth by passive (outside the dewar)
measurements. The unloaded filter outer peaks shift but
little with internal losses, providing a good measure of
bandwidth. The outer peak is given by

(39)

Q,=2 cos( (40)

M+ I)'
In contrast, the outer peak of the loaded (passive loss-
free) filter may be obtained from (30) as

Q’—Zcos(l\)
» M‘

/

(41)

Although no general, exact formula for bandwidth has
been found for the active-isolated amplifiers with inter-
mediate values of isolation, there is a way of estimating
bandwidth for responses which approach maximal flat-
ness; that is, responses which are as flat as permitted
by the constraints. Note from (26) that the gain is of
the form

g = 2[Kup¥ + - - K| (42)
where Ky is as given by (34) while K, is the summation
of K,, as defined in (33), plus the contributions from d
in the other terms of (32). Consequently, the midband
gain is

8o = 2(?5)_1. <43)

10 Tt is the gain-tunable bandwidth of the maser which compares
most nearly with the (instantaneous) gain-bandwidth of the tunnel
diode and the parametric amplifier.
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If the maximally-flat response condition yields a dis-
tribution of poles approximating a semicircle in the left
hand p plane (i.e., a pseudo-Butterworth distribution)
then the mean radius of this circle, which is obtained
from the product of the complex roots, is a good measure
of the 3 db half bandwidth."™ Thus, the normalized full
“Q” bandwidth is approximately

Ku 1M
0 = 2<K ) = dg~MM(L A H)CI0I (44)

M

This full bandwidth may be normalized relative to the
3 db {full bandwidth of a single passive cavity, giving

Qs = g, VM1 H)O-DIL (45)

For Af=2 the bandwidth expression (45) is exact. As
another example, the isolation value of H=0.4 which
corresponds very closely to a maximally-flat response
with 32 db gain in a 10-cavity maser, yields a normalized
(Qs,) bandwidth of 0.505 while (45) predicts a band-
width of 0.502. By increasing H to 0.43 one may widen
the relative bandwidth to approximately 0.615 at the
price of a 0.12 db gain ripple over the bandwidth. Al-
though the bandwidth shrinks less rapidly than with a
100 per cent isolated system, it still remains smaller
than that of the passive filter.

Substituting (39) in (45) gives the (denormalized)
relative bandwidth B, as

1 (gos> (1 + H) (1--M) A

Qme \oe

16
(gos - 1) ( )

r

The resulting increase in B, with increasing A{ is illus-
trated*? in Fig. 9. The increase with A is very rapid at
first, becoming nearly linear at higher values of M. The
limiting behavior is explored in the Appendix. It is
therein shown that for large 3/

(B:Qme) ~ (47)

InG, '

This value is illustrated in Fig. 11 and therein compared
to more exact curves based on specific computer results.

It is interesting to compare (47) with one kind of
theoretical limit, which is structure independent. As
mentioned in the introduction, maser negative resist-
ance gain action may be regarded as a type of inverse
incidental dissipation. It has been long known that
small values of incidental dissipation (either positive or

1 As the actual critical frequency distributions tend to be some-
what elliptical (which the major axis in the @ direction) this assump-
tion generally gives a pessimistic estimate of bandwidth for M >10.
However, computer checks indicate that (44) is a good compromise
for most design values.

12 The curves are based on specific values of 3/, g,c and H asso-
ciated with specific computer examples.
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300 T T L T T T Lim BTQ,M _ i( M > (51)
Mow» 7 \In Go
200 |- (Via 46)(Gyg=30) 4
LARGE M LIMIT (Via 47) 7 giving a gain-bandwidth factor 27 per cent greater than
(30 d8 GAIN) that of the isolator-coupled maser. Actually, for a typi-
0o | 2 cal design (an M =10 and B,Q=1.6) (51) gives an
optimistic result while (47) is pessimistic; the gains are
070 F . nearly identical (33.2 db vs 32.13 db).
Gain-bandwidth may also be increased by compensa-
080 - 7 tion with passive network elements [22], [23] (i.e.,
. (6.250) cavities). However, as one usually does not double the
° o030 a8 - bandwidth (a 30 per cent increase is more typical) by
@ (Gop=40) doubling the total number of elements (one passive for
040 4 each active element) and as it costs little more to insert
an active as opposed to a passive cavity in a dewar, it
appears that there is very little point to these compensa-
o6 | tion schemes with masers.?
007 i B. Sensitivity
A fundamental problem with all negative-resistance
005 7 amplifiers is that small changes in negative resistance or
70 0003 loading produce relatively large changes in gain. The
003 i Ly | maser amplifier provides no exception, although it is
i 2 3 4 5 7 10 s 20 usual to operate in a saturated condition such that

NUMBER OF CAVITIES, M

Ilig. 9—Some approximations to tunable percentage bandwidth as
a function of number of cavities (with constant over-all gain as
a parameter).

negative) may be well approximated in terms of the
group delay function T, and the cavity Q of a band-pass
filter as [5], [19]

8.690, Ty(w,)
2Q
Now it is also known that the maximum uniform group
delay which can be obtained from 2/ resonators may be

related to the bandwidth (in cycles) B,, over which the
delay is uniform, by the formula [20]

a8 —

(48)

oM M
TyBy = — < —
2 2

(49)
while 5 is a delay area efficiency. Combining (48) and
(49) one may derive

B0 T M
Ty G,

(50)

which compares closely to, but is somewhat larger than
(47), for large 7.

An equation may be derived for the direct-coupled
Butterworth response maser [21] which, in the limit of
large Af and large B,Q., reduces to the same form as
(47). Thus, as shown by O’Meara [1a], one obtains

changes in pump power have relatively little influence
on negative resistance [16].

While the computation of the exact gain sensitivity is,
in general, tedious, some special cases are relatively
simple. The easiest is for infinite (H =0) isolation. With
infinite isolation, the over-all band-center gain G, is
given by (35). Thus the gain sensitivity Sfm at band
benter with respect to changes in R, (or x,”’) is [1a]"

dG,./G,

O

= goM(d + Ro)

Rm
= 2M (G, — 1) (—;—R - ) (52)

m [

This result agrees with Stitch’s (20C) [18], with M =1,
as it should. On the other hand, as M becomes large
it is readily shown that

lim 2M (G, — 1) = InG, (53)
Moo
and, therelore
¥m
lim §,,¢ = < > In G, (54)
M- Ym — Vo

1 It should be emphasized that we refer only to the problem of
increasing tunable bandwidth. Compensating for instantaneous
bandwidth is another matter,

1 The corresponding sensitivity for a coupled series of reflection
type cavities is given by Kyhl and Strandberg [17] (in the notation
of this paper as (dG,/G,)(@r,/rm) = M(GY/? —(G~1/23), The M factor
in Strandberg’s (15) was omitted and he presumes 7, =0. The reflec-
tion type cavity series has the advantage for low values of M, but
this advantage rapidly vanishes as 14 becomes modestly large.
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Fig. 11—Decibel gain changes of a 10-cavity maser as a function of
db changes in activity.
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which is the same result as for the traveling wave maser,
as given by De Grass, et al. [2], if residual losses are
included in the traveling-wave formula. Ignoring the
factor [R../Rn.—R,) ], the H=0sensitivities for M/ =1, 2,
4, 8,12 and « have been computed from (53) and (54)
and plotted in Fig. 10. 1t is seen that M does not have
to be very large before the traveling-wave sensitivity is
approached rather closely.

None of these results has obtained any advantage
from the potential inverse feedback action associated
with finite values of isolator ratio. Some special cases
are discussed by O’Meara [la] and one of these is
illustrated in Fig. 10. One sees that improvement is
possible and one may decrease the sensitivity slightly
below that of the traveling wave maser. However, the
case illustrated corresponds to more feedback than one
can afford to use from a gain-frequency control view-
point.

The sensitivity with a value of isolation corresponding
to a near optimum H in a 10-cavity maser has heen
computed {or one particular gain value (31.7 db) and is
plotted as a single point in Fig. 10. It falls almost on
top of the curve for the traveling-wave maser.

One may question if the sensitivity is a good measure
of the actual gain changes and if so over what ranges.
Fig. 11 compares the actual gain changes occurring with
a 10-cavity maser and a pure traveling-wave maser for
variations in 7, measured in db. It is seen that the two
curves are nearly identical with the 10-cavity maser
having an almost insignificant advantage. As both
curves are nearly linear over a range of +1 db variation
in R,, (or x»'"), the sensitivity is indeed a good measure.
Similar computations near the band-edge frequencies
of the 10-cavity maser vyield lesser variation in gain.

IX. CoNcLusiONs

The maser amplifier which has been analyzed proves
to be fairly complex in spite of numerous approxima-
tions and the fact that many degrees of freedom have
been eliminated by the choice of an iterative structure.
Consequently, exact theoretical formulae are not avail-
able for all parameters of interest. However, certain
interim conclusions may be drawn. Probably the four
most significant conclusions are the following:

1) Unlike the nonisolated iterative passive filter, the
band-pass ripple may be held to quite low values
by the proper choice in round-trip isolation.

2) The product of gain in db and relative bandwidth
is linearly proportional to the number of cavities
(in first order theory) if the number of cavities is
reasonably large, given optimal isolation values.

3) The gain-tunable-bandwidth product obtainable
with this structure is comparable to that obtained
with competitive structures (using equally active
cavities or reactive elements).
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4) It may often be good practice to employ a larger
number of cavities than dictated by gain-band-
width requirements in order to improve stability,
that is, to reduce the sensitivity to cavity loadings
or activity (e.g., pumping).

Although we have not succeeded in developing exact
formal equations for either round-trip isolation or band-
width, by combining computer results and various
approximations we have been able to prepare design
curves which should permit a choice in these parameters
sufficient for normal engineering applications.

APPENDIX

LiMITING GAIN-BANDWIDTH AS THE NUMBER OF
RESONATORS BECOMES LARGE

From (46), it is noted that

Zos 1 + H (1-M)Y /M
e ()
gae Zos — 1

Also note that the difference between g, and g, is a
second order effect in the parameter (In G,/2M). Spe-
cifically, it is readily derived from (38) that

Zoe InG,\?2 In G,\?

Zos 2M 2M
Second, note from Fig. 6 that an optimum X is related
to gos, roughly as

(55)

(56)
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In H=~ — K lIn g, (57)

where K is a constant whose exact value is uncertain,
but lies roughly in the range

2 <K <23, (58)

Using a series expansion for H wvalues near unity and
ignoring the second order distinction between g,, and
Zos gives

1+ H=~2—-KI 2 (1 Kln G") (59)
=~ - n goe = — .
§ 4

Since the g,,—1 factor in (55) is small to begin with,
second-order corrections of the form (56) become im-
portant. Thus

In G, 1
+ :l . (60)
2M

Substituting (59) and (60) in (55) gives a large M
approximation

50 M [1+<1 K>lnGo:|"1
NG, 2/ om

M
InG,

(61)

LisT oF SyMBOLS

All, A127 A2l; A22

Matrix element of the over-all amplifier matrix.

A Transmission matrix description of an isolator.
A A reduced isolator matrix which includes the inversion and isolation
functions of an effective A/4 isolator but excludes phase shift effects.
A The resistive part of an isolator matrix.
Am Transmission matrix describing a maser cavity.
b= B/Z, Normalized iris susceptance.
B, = Siay T vy Relative bandwidth of an M-cavity maser.
w.(1 + 8)

d=N¥r, —r,)Y,

A transformed effective maser cavity resistance; also a predistortion

shift in the complex frequency plane (assuming a normalized cavity in-
ductance of 1 Henry).

2= VG, Band-center transducer voltage gain of an Af-cavity maser.
Los Band-center transducer voltage gain of a single-cavity maser.
G Gain loss (in db) as a result of inverse feedback action.

oo = (go)'¥

Band-center effective transducer voltage gain of a single-cavity in an

M-cavity maser.

Gas
H = €Xp (oq + ag)lis

7K,
L, =
wo¥o

Over-all power gain in db.
Round-trip attenuation of a single isolator as a voltage ratio.

Guide wavelength factor.

Equivalent low-pass inductance of a A/2 cavity.



1964

M
N=1+40b2

Own = Z Kk(zm)k

p=c+j0
0 1 wol.
" xa”  2Rn

0 wol. |: 1 <1
" E<1€m - Ro)_ Xm”
R,

Rn

N

Smo = ](wm - wo)

il
" dn ]
Tar(x) = cos (M cos™'x)

sin (M cos™! x)

R,

R m
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Usealx) = Vi
CH7Y/2 Zm,

x =7 {I—H (1-|—H)?J

XTT

I/vo = (Zo)_1

Zm=5sLo~+ R, — Ru
tw = N2, Vo= p—d

a
as

ot
Q) = _'—2'—
8 = dw/w,

Aw, = 0 — w,
Awy = w — wy,

Wmo = Wm ~ Wo

6 = lnH = (al + a2)lzs
0.5
b

Ay
fr
u = p(1+x)
.

X

144

Xm
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Number of maser cavities.

Turns ratio of the effective transformer in a transformer and line repre-
sentation of an iris.

A polynomial in z,, whose reciprocal gives the transducer gain.

Normalized low-pass complex frequency variable.
Maser medium Q.

Effective Q of a resonant network representing a waveguide filled with
a medium having a susceptibility x,.

A residual (passive) loss resistance in a A\/2 maser cavity resulting from
wall or dielectric losses.

A resistance introduced by the maser action within a material filling a
waveguide.

A low-pass or displacement complex frequency variable.

Frequency displacement between the line resonance center frequency
and the (iris-short-circuit) cavity resonant frequency.

Sensitivity of k to the parameter /.
Chebyshev polynomial of the first kind.

Chebyshev polynomial of the second kind.

Complex argument of a Chebyshev polynomial.

Equivalent series reactance resulting from an iris susceptance.
Characteristic admittance of a passive waveguide or line.
Effective series impedance representing a /2 maser cavity.

Effective transformed low-pass impedance of a A/2 maser cavity,
normalized to the waveguide characteristic impedance of.

Forward path attenuation constant in an isolator-waveguide section.

Backward path attenuation constant in an isolator-waveguide section.
Average attenuation constant.

Relative frequency shift resulting from iris detuning.
A frequency departure from the N/2 resonant frequency.
A frequency departure from the material line center frequency.

Frequency displacement between the line resonance and the \,/2
resonant frequency.

Round-trip attenuation of a single isolator in nepers.
Electrical length of the isolator, in radians.

Electrical length of the effective line in a transformer and line repre-
sentation of a single iris.

Guide wavelength.

Relative permeability of a passive medium.
Complex permeability of an active maser medium.
Maser material reciprocal half-line width.
Complex susceptibility of a maser medium.

Peak value of imaginary part of x.
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w Band-pass frequency variable.
0, Cutoff frequency in a waveguide.
Wm Maser medium line center frequency.
o Passive iris-short-circuit A/2 resonance frequency of a line or cavity.
Q A normalized low-pass frequency variable.
Q, Outer-peak (normalized) frequency of a loss-free unloaded passive filter.
&, Outer-peak (normalized) frequency of a loss-free loaded passive filter.
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